If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+7w-96=0
a = 1; b = 7; c = -96;
Δ = b2-4ac
Δ = 72-4·1·(-96)
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{433}}{2*1}=\frac{-7-\sqrt{433}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{433}}{2*1}=\frac{-7+\sqrt{433}}{2} $
| -4(x+3)+8=-4 | | 0.50(5.5)+.20y=3.45 | | 4p-28=-4+p | | 3(6x+5)+4(3x+2)+5=30x+29 | | 36x^2+18x^2+6x=0 | | 2x+30+4x+60=180 | | -6y-7=-6y | | b+60+75=180 | | 6(w-7)-8w=-38 | | 4(7-3t)+6t=-6t+9 | | 5x-3=3x+19 | | 2x-15=6x-35 | | A=1/2h(B1+B2) | | 3x–8=8x–20 | | 5x+7=101-7x | | 8r-4=36 | | |3p-9|=|2p+24| | | -14−20r=-18r+20 | | 89.3+x=100 | | 5x+3(2-x)=2x+6 | | 12-7x-12x^2=0 | | 96.5+x=100 | | 39.2=p112 | | -2x-15=-4x+5 | | 0=-4.9x+4 | | 7x+242=720 | | -2x-15=-x+5 | | 13x-4+3x+8=180 | | 17−15d=-16d | | 3x+2÷x-6=-7 | | 4y-10=2y-4 | | -19v−-17v=8 |